Tilaa uutiskirje RSS-syöte
Lauantai 24.08.2019

Ilmastouutisia

Ilmastonmuutos näkyy jo Australian ilmastossa


09.02.2014 22:41

Australiassa koettiin viime vuonna historian kuumimmat kalenterivuosi, 12 kuukauden jakso, kevät, kesä, kuukausi, viikko ja päivä. Tällä viikolla julkaistujen tietojen mukaan myös tammikuussa 2014 nähtiin yksi historian merkittävimmistä helleaalloista. Australian helleaallot ovatkin uuden tutkimuksen mukaan tulleet entistä pitemmiksi ja kuumemmiksi.

Ajanjaksolla 2001-2014 lämpötila saavutti 45 astetta vähintään yhdellä Victorian osavaltion sääasemista keskimäärin 1,5 päivänä vuodessa eli viisinkertaisesti vertailukauteen (1957-2000) nähden. Ilman ihmiskunnan aiheuttaman ilmastonmuutoksen vaikutusta tällaiset helleaallot olisivat ilmastomallien mukaan erittäin epätodennäköisiä. Näiden helleaaltojen on todettu vaikuttavan myös kuolleisuuteen lähes kaikissa ikäryhmissä.

Vuosi 2013 oli maailmanlaajuisesti mittaushistorian 2.-9. lämpimin. Maailman ilmatieteen järjestö WMO vahvisti tällä viikolla vuoden mittaushistorian kuudenneksi lämpimimmäksi. Australiassa viime vuosi oli koko mittaushistorian kuumin.

Eteläisen pallonpuoliskon kesä 2012-2013 oli Australiassa 1,11 astetta yli vertailukautensa keskiarvon. Tammikuu oli 1,76 astetta yli pitkäaikaisen keskiarvonsa ja kuumin Australiassa mitattu tammikuu. Tammikuussa koettiin myös Australian kaikkien aikojen kuumin päivä, kun 7.1.2013 päivän maksimilämpötilojen valtakunnallinen keskiarvo oli 40,3 astetta.

Valtakunnallinen lämpötilojen keskiarvo ylitti 39 astetta seitsemänä peräkkäisenä päivänä (2.-8.1.2013), mikä on uusi ennätys. Kaikkein kuuminta oli Moombassa, jossa mitattiin kuumimmaksi lämpötilaksi 49,6 astetta. Ihmiskunnan vaikutus on tutkimuksen mukaan kasvattanut näin lämpimän kesän todennäköisyyden (90 prosentin luotettavuudella) viisinkertaiseksi.

Mittaushistorian kuumin talvipäivä koettiin 31.8.2013. Elokuussa Australiassa saavutettiin mittaushistorian kuumin 12 kuukauden jakso. Tutkimuksen mukaan ihmiskunta lisäsi näin kuuman 12 kuukauden syntytodennäköisyyden satakertaiseksi verrattuna luonnolliseen tilanteeseen ilman ihmistä.

Myös eteläisen pallonpuoliskon kevät 2013 oli Australiassa mittaushistorian kuumin, 1,57 astetta yli vertailukauden keskiarvon. Syyskuun lämpötila ylitti vertailukauden syyskuiden keskilämpötilan 2,75 asteella, mikä on mittaushistorian suurin minkään kuukauden lämpötila-anomalia eli poikkeama tavanomaisesta.

Kymmenen vuoden 2004-2013 keskilämpötila Australian maa-alueilla oli 0,50 astetta yli kymmenvuotiskausien keskiarvon ja ylsi mittaushistorian jaetulle ensimmäiselle sijalle. Saman kymmenvuotiskauden merialueiden lämpötila oli myös mittaushistorian kuumin.

Mittaushistorian kuumimpia olivat myös vuoden 2013 tammi- ja helmikuiden meren lämpötilojen anomaliat verrattuna vastaavien kuukausien pitkän aikavälin keskiarvoihin. Koko vuoden 2013 meriveden lämpötilat ylittivät pitkäaikaisen keskiarvon 0,51 asteella, mikä on mittaushistorian kolmanneksi korkein anomalian arvo. Australian eteläisillä merialueilla tammi-marraskuun 2013 lämpötilat ylittivät vertailujakson keskiarvon 0,59 asteella ja mittaushistorian aiemman (vuonna 1999 mitatun) vuosiennätyksen 0,03 asteella.

Vuoden 1910 jälkeen Australiassa maa-alueet ovat lämmenneet noin asteella, samoin merialueet. Pääosa lämpenemisestä on tapahtunut vuoden 1950 jälkeen.

Tohtori David Jones Australian ilmastokeskuksesta sanoo, ett√§ Australian l√§mpenemistrendi on hyvin selv√§. Selvint√§ l√§mpeneminen on Australian sis√§osissa, kun taas rannikkoalueilla meret hieman hidastavat l√§mpenemist√§. Jonesin mukaan pitk√§n aikav√§lin keskiarvoa viile√§mm√§t vuodet ovatkin jatkossakin ep√§todenn√§k√∂isi√§, ellei voimakasta La Ni√Īa -ilmi√∂t√§ kehity. Vuodesta 2014 odotetaan j√§lleen l√§mmint√§, ei kuitenkaan enn√§tyksellist√§.

Melbournen yliopiston ilmastotieteilijä David Karoly sanoo, että yhdeksän käytetyn ilmastomallin mukaan tällaiset vuoden 2013 ja edellisen ennätysvuoden 2005 lämpötilaennätykset olisivat Australiassa erittäin epätodennäköisiä ilman ihmisen vaikutusta. Pelkkä luontainen vaihtelu ei ole siis todennäköisesti voinut vaikuttaa, vaan kasvihuonekaasuilla on ollut tärkeä merkitys Australian lämpöennätyksissä. Ilmastomalleilla tehtiin lukuisia simulaatioita, kaikkiaan lähes 13 000 simulaatiovuotta, eikä kertaakaan saavutettu vuosien 2005 ja 2013 kaltaisia ennätyksiä pelkästään luontaisilla tekijöillä. Kun simulaatioihin lisättiin luontaisten tekijöiden rinnalle ihmiskunnan tuottamien kasvihuonekaasujen vaikutus, aikavälin 2006-2020 simulaatioissa tällaisia ennätyksiä tuli keskimäärin kerran kymmenessä vuodessa.

Tammikuussa 2014 jälleen uusia helleaaltoja

Tammikuu 2014 oli j√§lleen Australiassa poikkeuksellisen l√§mmin kuukausi. Koko Australian tammikuun keskim√§√§r√§inen p√§iv√§n ylin l√§mp√∂tila oli 0,97 ¬įC yli tavanomaisen, minimil√§mp√∂tila 0,85 ¬įC yli tavanomaisen ja vuorokauden keskil√§mp√∂tila 0,91 ¬įC astetta yli tavanomaisen.

Onslow‚Äôssa mitattiin 48,8 ¬įC tammikuun kahdeksantena p√§iv√§n√§ ja Emu Creekiss√§ 49,2 ¬įC tammikuun kymmenenten√§ p√§iv√§n√§. Viikonloppuna 11.-12. tammikuuta l√§mp√∂tilat nousivat monin paikoin 45 asteeseen. Perthiss√§ vietettiin mittaushistorian kuumin y√∂ 12. tammikuuta (29,7 ¬įC).

Yksi mittaushistorian merkittävimmistä helleaalloista vaikutti Kaakkois-Australiassa 13.-18. tammikuuta. Vastaavia monen päivän helleaaltoja on paikoin ollut vain tammi-helmikuussa 2009, tammikuussa 1939 ja ehkä tammikuussa 1908. Nyt ei saavutettu aivan yhtä korkeita lämpötiloja kuin vuosina 2009 ja 1939, mutta äärimmäinen kuumuus vaikutti nyt pitemmän aikaa varsinkin Etelä-Australian ja Victorian rannikkoalueilla, esimerkiksi Melbournessa ja Adelaidessa. Suurimmassa osassa Victoriaa päivän maksimilämpötilat olivat vähintään 12 astetta tavanomaista korkeammat.

Canberrassa mitattiin ennätyksellisesti neljänä peräkkäisenä päivänä vähintään 39 asteen ja kolmena peräkkäisenä päivänä vähintään 40 asteen maksimilämpötila. Mittaushistorian aikana Canberrassa on saavutettu 40 astetta vain 13 päivänä. Näistä yhdeksän on ollut viimeisimmän kahdeksan vuoden aikana (yksi vuonna 2007, kolme vuonna 2009, kaksi vuonna 2013 ja kolme vuonna 2014).

Adelaidessa mitattiin 14. tammikuuta mittaushistorian nelj√§nneksi kuumin l√§mp√∂tila (45,1 ¬įC). T√§m√§ oli historian viides kerta, kun saavutettiin 45 asteen l√§mp√∂tila. Kolme n√§ist√§ viidest√§ kerrasta on ollut viimeisimm√§n viiden vuoden aikana (2009, 2013 ja 2014). Adelaidessa oli enn√§tykselliset viisi per√§kk√§ist√§ p√§iv√§√§, jolloin vuorokauden maksimil√§mp√∂tila ylsi v√§hint√§√§n 42 asteeseen.

Melbournessa saavutettiin mittaushistorian korkein vuorokauden keskil√§mp√∂tila (35,45 ¬įC) 16. tammikuuta. Edellinen enn√§tys (35,40 ¬įC) oli vuodelta 2009. Vuorokauden keskil√§mp√∂tila on saavuttanut 35 astetta Melbournessa vain nelj√§ kertaa vuodesta 1908 alkavan mittaushistorian aikana (kaksi kertaa sek√§ vuosina 2009 ett√§ 2014). T√§m√§n vuoden tammikuussa p√§iv√§n ylin l√§mp√∂tila Melbournessa ylsi v√§hint√§√§n 41 asteeseen nelj√§n√§ per√§kk√§isen√§ p√§iv√§n√§ ja vuorokauden alin l√§mp√∂tila v√§hint√§√§n 27 asteeseen kahtena per√§kk√§isen√§ y√∂n√§.

Victorian osavaltiossa oli mittaushistorian kuumin neljän peräkkäisen päivän jakso sekä minimi- että maksimilämpötilojen perusteella mitattuna. Koko osavaltion maksimilämpötilojen keskiarvo ylitti 41 astetta neljänä päivänä ja vuorokauden keskilämpötila 32 astetta kolmena päivänä. Aiemmat ennätykset olivat vuodelta 2009.

Ennen tämän vuotista helleaaltoa Victoriassa oli koko mittaushistorian aikana ollut vain neljä päivää, jolloin koko osavaltion vuorokauden keskilämpötila ylitti 32 astetta (kolme kertaa vuonna 2009 ja kerran vuonna 1959). Vuoden 2001 jälkeen todennäköisyys saavuttaa koko osavaltion keskilämpötila 30 astetta on kasvanut merkittävästi.

Vuorokauden minimil√§mp√∂tila on t√§rke√§ helleaallon voimakkuuden mittari, koska korkeat y√∂l√§mp√∂tilat pahentavat kuumien p√§ivien vaikutuksia. Lavertonissa mitattiin keskiy√∂ll√§ 14.-15. tammikuuta 38,6 ¬įC.

Erityisen merkitt√§vi√§ vuosien 2013 ja 2014 helleaallosta tekee se, ett√§ ne tapahtuivat ENSO (El Ni√Īo - La Ni√Īa) -syklin neutraalissa vaiheessa, eik√§ El Ni√Īon l√§mmitt√§ess√§. Tutkijat huomauttavat, ett√§ t√§m√§ kaikki tapahtui, vaikka taustalla ilmenev√§ ilmastonmuutos on l√§mmitt√§nyt maapalloa esiteollisesta ajasta vasta vajaalla asteella.

Australian historian pahimmat helleaallot

Victorian osavaltiossa mikään aiempi helleaalto ei yllä lähellekään näitä kahta viimeisimmän viiden vuoden aikana koettua hellejaksoa (2009 ja 2014). Nyt poikkeuksellista oli varsinkin erittäin korkeiden lämpötilojen pitkä kesto, eivät niinkään yksittäiset lämpötilaennätykset. Muutamilla paikoilla kuitenkin saavutettiin myös uusia sääasemakohtaisia lämpöennätyksiä.

Victoriassa päivän ylin lämpötila nousi 45 asteeseen kolmena päivänä tammikuussa 2014. Ajanjaksolla 2001-2014 eli 14 viimeisimmän vuoden aikana maksimilämpötila on saavuttanut 45 astetta yhdellä tai useammalla Victorian sääasemalla kaikkiaan 21 kalenterivuorokautena (keskimäärin 1,5 päivänä vuodessa). Ajanjaksolla 1957-2000 eli 44 vuoden aikana tämä tapahtui vain 14 päivänä (keskimäärin 0,3 päivänä vuodessa). Näin korkeiden lämpötilojen esiintymistodennäköisyys on siis kasvanut viisinkertaiseksi. Tarkastelu alkaa vuodesta 1957, koska iso osa kyseistä vuotta edeltävistä tiedoista on vielä digitalisoimatta.

Toisaalta joillakin sis√§maan s√§√§asemilla mitattiin t√§m√§n vuoden tammikuussa poikkeuksellisen suuria p√§iv√§- ja y√∂l√§mp√∂tilojen eroja. L√§nsi-Victorian Westmeress√§ mitattiin 13. tammikuuta minimil√§mp√∂tilaksi 5,0 ¬įC ja maksimil√§mp√∂tilaksi 39,3 ¬įC. T√§m√§ on mittaushistorian suurin vuorokautinen l√§mp√∂tilaero (34,3 ¬įC) mill√§√§n Victorian osavaltion s√§√§asemalla. Edellinen enn√§tys (34,1 ¬įC) oli Fiskvillest√§ tammikuulta 1957 (minimi −0,1 ¬įC ja maksimi 34,0 ¬įC).

Samanaikaisesti Australian eteläosien helleaallon kanssa Pohjois-Australiassa oli tavanomaista kylmempää. Niinpä koko Australian keskilämpötilat jäivät tämän vuoden tammikuussa hieman alemmiksi kuin vuosi sitten.

Kaiken kaikkiaan tammikuun 2014 helleaalto oli pitempi (muttei yhtä kuuma) kuin vuonna 2009 ja ilmeisesti kuumempi (mutta lyhyempi) kuin vuonna 1908. Vuoden 1908 helleaallosta ei kuitenkaan ole olemassa riittävästi vertailukelpoista tietoa. Vertailukelpoisen Milduran sääaseman perusteella näyttää kuitenkin siltä, että siellä lämpötila ylitti 44 astetta vuonna 1908 vain yhden kerran, ja että vuotta 1908 merkittävämpiä helleaaltoja on ollut vuosina 1939, 2009 ja 2014.

Tappavatko helleaallot?

Victoriassa on tehty perusteellinen tutkimus tammikuun 2009 helleaallon vaikutuksista kuolleisuuteen. Tutkimuksessa vertailtiin helleaallon aikana kuolleiden määrää vuosien 2004-2008 samana kalenteriviikkona kuolleiden ihmisten määrään. Tulosten mukaan helleaallot lisäsivät kuolleisuutta kaikissa ikäryhmissä, paitsi 0-4 -vuotiaiden kohdalla tulos ei ollut lukumääräisesti vähäisten kuolemantapausten vuoksi tilastollisesti merkitsevä.

Ikäryhmässä 5-64 vuotta kuolevuus lisääntyi 55 %, ikäryhmässä 65-74 vuotta 46 % ja 75-vuotiaiden tai vanhempien kohdalla 64 %. Lisäksi on mahdollista, että helleaalto edisti joidenkin ihmisten kuolemaa, vaikkei kuolema tapahtunutkaan heti helleaallon aikana.

Monissa muissakin tutkimuksissa on havaittu helleaaltojen lisäävän kuolleisuutta. Erityisen suuresti vaikuttavat pitkäkestoiset helleaallot, poikkeuksellisen korkeat lämpötilat, korkeat yölämpötilat, epätavalliseen aikaan (keväällä tai syksyllä) sattuvat helleaallot ja ehkä myös korkea ilmankosteus.

Brittiläisessä tutkimuksessa tutkittiin lämpötilojen vaikutuksia kuolemantapauksiin Isossa-Britanniassa vuosina 1993-2006. Tulosten mukaan yhden celsiusasteen lämpeneminen lisää kuolevuutta 2,1 % ja yhden celsiusasteen viileneminen 2,0 %. Ilmastonmuutoksen myötä kuumien päivien lukumäärän ennustetaan kolminkertaistuvan vuoteen 2080 mennessä. Kylmät päivät puolestaan vähenevät hieman.

Nykyiseen verrattuna Isossa-Britanniassa ennustetaan kuumuuden aiheuttamien kuolemantapausten määrän lisääntyvän 66 % 2020-luvulla, 257 % 2050-luvulla ja 535 % 2080-luvulla. Kylmyyden aiheuttamien kuolemantapausten lukumäärän ennustetaan lisääntyvän 3 % 2020-luvulla ja vähenevän 2 % 2050-luvulla sekä 12 % 2080-luvulla. Tässä on otettu huomioon sekä väestönkasvu että ilmaston muuttuminen.

Nykyään kylmyyden aiheuttamia kuolemantapauksia kirjataan Isossa-Britanniassa 41 000 vuodessa ja kuumuuden aiheuttamia 2 000 vuodessa. Vuonna 2080 kylmyyden aiheuttamia kuolemantapauksia ennustetaan olevan 36 500 ja kuumuuden aiheuttamia 12 500. Kylmyyskuolemat ovat siis tuolloin vähentyneet 4 500 ja kuumuuskuolemat lisääntyneet 10 500. Kaiken kaikkiaan äärilämpötilojen edistämät kuolemantapaukset siis lisääntyvät 6 000:lla vuoteen 2080 mennessä.

Helleaalto näyttää vaikuttavan erityisesti iäkkäiden ihmisten kuolleisuuteen. On kuitenkin täysin mahdotonta sanoa, kuinka moni näistä ihmisistä olisi kuollut muutenkin pian, vaikka helleaaltoa ei olisi tapahtunutkaan. Monet iäkkäät ovat terveydeltään heikkoja ja lopulliseen kuolemaan voi johtaa jokin ulkoinen tekijä, olkoonpa se helleaalto tai influenssavirus.

Ilmastonmuutoksen myötä helleaaltojen ennustetaan olevan tulevaisuudessa maailmanlaajuisesti entistä yleisempiä, voimakkaampia ja pitkäkestoisempia. Helleaaltojen edistämiä kuolemia voidaan kuitenkin yrittää estää välttämällä liikkumista, oleskelemalla viileissä tiloissa ja pitämällä huolta riittävästä nesteiden saannista.

Jari Kolehmainen

Bookmark and Share






31


Jaana Kaipainen, Tarja Tuomainen:
Metsäkadon päästöt ja niiden vähentäminen Suomessa
Marja Järvelä:
Kuluttajista ilmastokansalaisiksi
Ilkka Savolainen:
Turvepeltojen päästöjä pitää vähentää
Antti Mäkelä:
Rankkasateet ja rajuilmat - mihin pitää varautua tulevaisuudessa?
Sanna Kopra:
Kiina nousemassa ilmastopolitiikan johtajaksi?
Pinja Sipari:
Ilmastokasvatusta opettajille
Anne Tolvanen:
Terve luonto osaksi maankäyttöä
Ilkka Savolainen, Sanna Syri:
Puusähköllä ajaa pidemmälle kuin puudieselillä - kumpaan metsiämme siis kannattaa käyttää?
Mikko Alestalo:
Ilmakehän hiilidioksidipitoisuus jatkaa kasvuaan
Eemeli Tsupari, CO2Esto:
Lehmän lannalla liikenteeseen
Unto Eskelinen:
Yksinkertainen viesti ympäristökestävyydestä
Ilkka Savolainen:
Puun energiakäyttö ei ole ongelmatonta
Antti Iho:
Rajoja ja rakkautta ympäristönsuojelussa
Riitta Silvennoinen:
Bemarin uusi ekologinen elämä
Leena Kontinen:
Ihmisten Pariisi - muutos on alkanut
Piia Moilanen:
Tuottavuusloikka pyöräillen
Teija Lahti-Nuuttila:
Energiatehokkuudella vähemmästä enemmän
Jussi Uusivuori:
Väärät verot tulevat kalliiksi
Aki Mäki-Petäys:
Vaelluskalojen kohtalon hetki - nyt on aika toimia
Oras Tynkkynen:
Pariisin voittajat
Oras Tynkkynen:
Uusi sopimusluonnos avattuna
Emma Lommi:
Ilmastonmuutos on merkittävimpiä globaaleja terveys- ja tasa-arvokysymyksiä
Hanna-Liisa Kangas:
Teknologiayhteistyö tapahtuu kentällä - ei työpajoissa
Hanna Hakko:
Hanasaari suljetaan - seuraavaksi Suomen ja maailman muut fossiilivoimalat
Oras Tynkkynen:
Miksi en taputtanut Malesialle

Lisää blogeja >>

¬ŅQui√©nes son los responsables de afrontar el cambio clim√°tico?

Source: Infobae - El cambio clim√°tico es probablemente el mayor desaf√≠o ambiental y social que enfrenta la humanidad, y que fue generado por el ser humano. Es un problema global que se resuelve en forma global, en donde existen muchos matices que hacen dif√≠cil el consenso entre los pa√≠ses respecto a las decisiones que deben tomarse. Sin embargo, todos reconocen el siguiente principio como marco de discusi√≥n: principio de responsabilidades comunes pero diferenciadas. Este principio reconoce que todos los pa√≠ses tienen responsabilidad com√ļn de solucionar el problema, aunque no todos en el mismo nivel y grado, ya que hist√≥ricamente los pa√≠ses desarrollados han contaminado m√°s a efecto de construir sus econom√≠as que aquellos que est√°n en v√≠as de desarrollo. Y no todos los pa√≠ses tienen la misma capacidad y recursos para enfrentar la problem√°tica.

Consecuencias del cambio clim√°tico en los peces

Source: El tiempo - Una subida de 2¬įC altera la metilaci√≥n del ADN y la expresi√≥n de genes claves para la supervivencia y el desarrollo. Este estudio ofrece una nueva visi√≥n sobre las consecuencias del cambio clim√°tico en los peces a trav√©s de modificaciones epigen√©ticas en todo el genoma

Could evaporation be the next renewable energy?

Source: Reuters - Wind and solar power are growing as sustainable alternatives to fossil fuels, but storing renewable energy through the night, when the sun isn?t shining, or when no wind is rotating the turbines, remains a hurdle.

Figueres: ?Estados Unidos pierde competitividad saliendo del Acuerdo de París?

Source: EFE Verde - La ex secretaria de cambio climático de la ONU que alcanzó el Acuerdo de París y actual directora del proyecto Misión 2020, Christiana Figueres, subraya que EE.UU. "se queda rezagado y pierde competitividad" abandonando el Acuerdo de París y cediendo a otros países el liderazgo de la economía baja en carbono.

Reducir la deforestación e incrementar captura de CO2 en el suelo, una estrategia climática y de seguridad alimentaria

Source: El Peri√≥dico - Las pol√≠ticas clim√°ticas que se centran en la agricultura y los bosques podr√≠an llevar al aumento de los precios de los alimentos, pero reducir la deforestaci√≥n e incrementar la captura de carbono en la agricultura podr√≠a reducir significativamente las emisiones de gases de efecto invernadero, evitando riesgos para la seguridad alimentaria, seg√ļn un nuevo estudio publicado en 'Environmental Research Letters'.

Kunnat CO2-raportissa

Äänekoski
Alavus
Aura
Espoo
Eurajoki
Forssa
Hämeenkyrö
Hämeenlinna
Hamina
Hankasalmi
Hanko
Hartola
Hausjärvi
Heinola
Helsinki
Hollola
Hyvinkää
Iisalmi
Iitti
Ikaalinen
Ilmajoki
Ilomantsi
Imatra
Järvenpää
Janakkala
Joensuu
Jokioinen
Jyväskylä
Kärkölä
Kaarina
Kajaani
Kangasala
Karkkila
Kauniainen
Kemi
Kemiönsaari
Kerava
Kirkkonummi
Kiuruvesi
Kokkola
Kotka
Kouvola
Kuhmoinen
Kuopio
Kuortane
Kurikka
Kuusamo
Lahti
Laitila
Lappeenranta
Lapua
Lempäälä
Lieto
Lohja
Loimaa
Loviisa
Mäntsälä
Mänttä-Vilppula
Masku
Mikkeli
Mynämäki
Naantali
Nakkila
Nousiainen
Nurmijärvi
Orimattila
Oulu
Padasjoki
Paimio
Parainen
Parikkala
Pirkkala
Pori
Pornainen
Porvoo
Posio
Punkalaidun
Pyhtää
Raahe
Raisio
Rauma
Riihimäki
Rovaniemi
Rusko
Salo
Sastamala
Sauvo
Seinäjoki
Sipoo
Somero
Suomussalmi
Suonenjoki
Sysmä
Taivalkoski
Tampere
Turku
Tuusula
Ulvila
Uusikaupunki
Vaasa
Vantaa
Varkaus
Vihti
Ylöjärvi
Ylivieska